back to table of content


INFB  Mathematics III Course INF
Lecturers : Prof. Dr. Georg Merz   
Term 3
Course Classification : Bachelor Informatik CH 2
Language : Deutsch Type VÜ 
Type of examination : PL  Credits
Method of evaluation : written examination 90 min 
Requirements :
Cross References :  
Previous knowledges : Course Mathematics I 
Aids and special features :  
Teaching aims : Analysis: basic skills in computation of limits of sequences and series , of integration and differentiation of real and complex functions, knowledge of partial differentials and convergence of functions, overview of several techniques for interpolation and approximation

Stochastics: knowledge of basic notions such as: continuous random variables, distribution, density functions, moments and quantiles, ability to deduce basic laws from the axioms of probability theory, ability to solve probability problems involving the applications of the laws of probability and common probability distributions and of Bayes theorem overview of several important probability distributions 
Contents :

Analysis: limits of sequences and series, criteria for convergence, power series, transcendent functions, continuous functions, important limits, monotone functions, sequences and series of functions, uniform convergence, Stone-Weierstraß theorem, calculus, rule of LHospital, antiderivatives, basic intergrals, derivatives of higher order, Taylors theorem, partial derivatives, integral calculus: mean value theorem

techniques for interpolation and approximation of polynomials (Taylor, Lagrange, splines, smallest square method)
probability theory:
notion of probability , Kolmogorov-axioms, stochastic independence, random variables and their parameters, special distributions 

Literature : Stingl P.: Mathematik für Fachhochschulen. Technik und Informatik, 7. Aufl. München: Hanser 2003
Papula L.: Mathematik für Ingenieure und Naturwissenschaftler, Band 3, 5. Aufl. Wiesbaden: Vieweg und Teubner 2008
Teschl S., Teschl G.: Mathematik für Informatiker, Band 2, Analysis und Stochastik. 2. Aufl. Berlin, Heidelberg: Springer 2007  


back to table of content