Zurück zur Übersicht


MEDI  Bildverarbeitung SG INF
Dozent : Prof. Dr. Thomas Schrader    eMail
Semester 3
Einordnung : Bachelor Medizininformatik, Katalog B-MED-INF Wahlpflicht SWS 4
Sprache : Englisch Art
Prüfungsart : PL  Credits
Prüfungsform : Klausur 120 min 
Voraussetzungen :
Querverweise :  
Vorkenntnisse : Digitale Signalverarbeitung  
Hilfsmittel und Besonderheiten : Studien- und Prüfungsleistungen:
Semesterbegleitende Leistungen können in die Bewertung einbezogen werden. 
Lehrziele : Verstehen Die Studierenden kennen die unterschiedlichen Bildtypen und ihre Verwendung im medizinischen Kontext. Sie verstehen die unterschiedlichen Modalitäten der Bilderzeugung. Analysieren Sie können Daten aus den genannten Quellen auswerten und präsentieren. Beurteilen Die Studierenden können die Bilddaten bezüglich der Qualität und der inhaltlichen Informationen beurteilen. Sie sind in der Lage, relevante Informationen in den Daten identifizieren. Anwenden Sie wenden verschiedene Algorithmen der Bildverarbeitung zur Verbesserung der Bildqualität, zur Segmentierung und Klassifikation von (medizinischen) Bildern an. Sie programmieren Algorithmen in Python. Erschaffen Sie sind in der Lage, einen bildanalytischen Prozess selbständig zu planen und durchzuführen.  
Lehrinhalte :

Bildgebende Verfahren * Kamera * Hyperspektralkamera, Medizin: Bildgebende Verfahren in der Medizin (CT, Rö, Virtuelle Mikroskopie) Bildanalyse * Histogramme, Grauwertverteilungen, Farbräume Bildverarbeitung * Filterung, Segmentierung, Klassifikation Auswertung * Fortschrittliche Methoden der Bildanalyse: Deep-Learning  

Literatur : Zhou SK, Greenspan H, Shen D. Deep learning for medical image analysis [Internet]. 2017 [zitiert 12. Juli 2017]. Verfügbar unter: http://public.eblib.com/choice/publicfullrecord.aspx?p=4789490 Solomon C, Breckon T. Fundamentals of digital image processing: a practical approach with examples in Matlab. Chichester, West Sussex ; Hoboken, NJ: Wiley-Blackwell; 2011. 328 S. García GB, Herausgeber. Learning image processing with OpenCV: exploit the amazing features of OpenCV to create powerful image processing applications through easy-to-follow examples. Birmingham: Packt Publ; 2015. 208 S. (Packt open source). Bovik AC. The essential guide to image processing. London ; Boston: Academic Press; 2009. 853 S.  


Zurück zur Übersicht